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J. Phys.: Condens. Matter 2 (1990) 3841-3854. Printed in the UK 

The exact susceptibility of a Kondo spin-: for ferromagnetic 
coupling and T = 0 
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Institut fur Theoretische Physik, Universitat Hannover, Federal Republic of Germany 

Received 31 August 1989, in final form 5 December 1989 

Abstract. The magnctisation induced by a localised spin- 1. interacting with the itinerant 
electrons of a paramagnetic host metal is obtained for a known band Kondo model and 
for the ‘other’ sign of coupling. Using the formal Bethe ansatz solution to this model 
the ground state energy is found for both the interacting host electrons and for the same 
system with impurity. The host magnetic properties are enhanced by a Stoner-like exchange. 
The impurity susceptibility diverges inverse-logarithmically at vanishing applied magnetic 
field-a result not accessible via perturbation theory. 

1. Introduction 

The magnetism of itinerant electrons and the magnetic properties of impurities imbed- 
ded in a host metal are typical areas of solid state theory where non-perturbative 
methods are required (Moriya 1985, 1987). The best non-perturbative method to apply 
to any problem is that of solving it exactly. Ten years ago, the purists succeeded by 
reactivating the Bethe ansatz and solved, e.g., the Kondo problem (Andrei et al 1983, 
Tsvelick and Wiegmann 1983). If one uses the Bethe ansatz one is far from ‘applying 
a method‘. Instead there are only very few Hamiltonians that have Bethe-type eigen- 
states. Thus the construction of such a model is the crux of the matter. If this has been 
achieved, whether the model has reasonable overlap with physical reality depends on 
a further lucky accident. This paper is based on such an event. 

Consider a magnetic impurity (modelled by a spin-; localised at the origin) in 
contact with the band electrons of a paramagnetic host metal. Due to the repulsive 
e-e interaction in the bulk there will be exchange enhancement above the value of 
the Pauli susceptibility. If the half spin couples ferromagnetically, one expects the 
formation of an additional magnetisation cloud around the impurity (at least at non- 
zero applied magnetic field). This picture might apply to very dilute alloys the band 
electrons of which couple ferromagnetically to the magnetic ions (contained, e.g., Fe 
ions in the ppm range in a Rh host). The question arises as to how the corresponding 
excess magnetisation due to the impurity varies with the applied field. Here we shall 
concentrate on this question, and we shall give the exact answer. But the answer, as 
might be admitted, refers to a model, and (inevitably) a model is specialised. 

In a previous paper (Schulz 1987-henceforth referred to as I) the following band 
Kondo Hamiltonian was proposed to overcome certain cut-off difficulties with the 
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already existing ‘relativistic’ Kondo model (Wiegmann 1980, 198 1, Andrei 1980), but 
without losing exact solvability. In I the formal solution was worked out and studied 
for antiferromagnetic coupling (g -= 0) until the Kondo effect was obtained. Here, 
however, we consider the case of ferromagnetic coupling g > 0 

The first term in (1) is the s-wave part of the kinetic energy of the band electrons. 
The energy scale is such that h2/2m = 1. Only the s-wave states sin(kr)/r couple to a 
pointlike impurity. a, b are spin indices (sum convention). r is the Pauli spin matrix 
vector of the impurity. g is a matrix element taken out of the integrals after neglecting 
all k-dependence. Potential scattering of arbitrary strength 1 - w is included. Hint 
represents the e-e interaction: 

In listing some of the properties of the model (1) let us start by listing the pleasing 
aspects. 

(i) The eigenstates of (1) are Bethe wavefunctions, and so the corresponding exact 
energy eigenvalues can be found. 

(ii) Deleting the second term in (1) leads to the Hamiltonian H, of the pure host 
(index b for bulk). H, can be diagonalised exactly, too. Due to this, impurity effects 
can be obtained by subtraction. 

(iii) Obviously, the bare spectrum of (1) is bounded from below. There are thus no 
cut-off problems (see the introduction of I). 

(iv) For repulsive e-e interaction there are no pathologies in the behaviour of 
the band electrons. Note, that (as the model is effectively one-dimensional) attractive 
interaction would lead to bound pairs of electrons (see also the conclusions of I). 

We now go on to rather unfortunate properties. 

(v) Only electrons in s-wave states are included in (1). This means that there is no 
interaction of s- with p-waves etc.. All bulk properties noticed (as e.g. those in (ii) and 
(iv)) refer to the s-wave subsystem. 

(vi) The same coupling g governs the e-e interaction (2) and the impurity term. 
This relation is dictated by solvability. 

(vii) The matrix element in (2) has a rather special form (again dictated by 
solvability), which refers to a non-local two particle interaction (see also I and Appendix 
1 therein). Equation (2) means that, in preparing the s-wave subsystem, only a few 
special types of transitions are retained. Nevertheless, these are repulsive. 

All the work on the stationary Schrodinger equation with Hamiltonian (1) may be 
grouped in two halves. The first half ends with the formal solution-see (7) and (8) 
below-i.e. with non-linear algebraic equations for the quasi-momenta which determine 
the energy eigenvalues. Then, in the second half the physics has to be worked out (‘real 
solution’). As the analysis in the first half does not depend on the sign of the coupling, 
it is completely contained in I. Hence the present paper is restricted to the analysis 
required in the second half, and we may start from the formal solution. Nevertheless, 
let us briefly remember the main steps that lead from (1) to (7) and (8). 
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By changing the meaning of the creation operators ct (let cl, create a cos(kx) state) 
the problem (1) is placed on a fictitious x axis with states of even parity only (see I). 
In ‘first quantisation’ and in the N-particle sector the new Hamiltonian reads 

N N N 

H = - 2g 6 ( X j ) ( Z b j  + 1 - w) + 4g [a ( X i  - X j )  + 6 ( X i  + Xj)] . (3) 
j=l j=l k j  

(3) has the same spectrum as (l), and the s-wave many-body eigenstates of (1) are 
related to those of (3) by a unitary transformation (stated explicitly in I). On omitting 
the second sum, equation (3) turns into the bulk Hamiltonian. In both problems the 
number of down spins M is conserved. Due to this, the model is easily extended to 
include an applied magnetic field: 

j = l  

The Bethe wavefunctions are made up of exp(ikx) factors (see I), refer to spatial 
ranges separated by the delta interactions in (3), and are to be complemented by 
passage formulas connecting these ranges. Factorisation can be shown. Let the x axis 
be bound to a circle of circumference 2L. The corresponding periodic boundary 
conditions lead to N equations for N quasi-momenta kj depending on the solution of a 
further matrix-eigenvalue problem in the spin degrees of freedom. Its treatment (Schulz 
1985) by a second Bethe ansatz leads to M equations for M spin momenta 9,. These 
N + M coupled equations (see (44) in I) constitute the formal solution, whereas the 
energy is simply the sum of the N squared k-momenta. For convenience we introduce 
dimensionless energy, coupling and momenta via 

Note that U may be interpreted in two ways, as an effective coupling (U -+ 0 for g --+ 0 
at fixed L) and as an effective length that diverges in the thermodynamic limit (U -+ CO 

for L --+ CO at fixed g). Turning on the interaction, the k-momenta start off as multiples 
of n/L while the new momenta (q = k/g = multiples of n/u)  start at plus infinity and 
decrease. 

With (5 ) ,  the formal solution to the energy eigenvalues of (1) reads as follows: 

N 

E = cq; 
j=l 

(7) 
qj + y, - i qj - y, - i  
qj + y r  + i qj - y r  + i exp (-i2vqj) = [ q j  + i ( 2 - ~ ) 1  fi o’= l , . . * , N )  

qj - i(2 - w) r=l  

N 
yr  +i( l  - w )  y r  +i ( l  + w) 

[y, - i ( l -  w) y, -i(l + w ) ]  
Y, + q j  + i  y r  - q j  + i  
y, +q j  - i  y r  - q j  - i  

(I = 1, ..., M).  ’ y r  + ys + 2i y, - ys + 2i 
y, + ys - 2i y, - ys - 2i s= 1 
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If the factors in square brackets are omitted, equations (7) and (8) refer to the bulk 
system (no impurity). Equations (7) and (8) are almost identical (apart from some 
signs) to the equations (47) and (48) of I. This small difference, however, leads to a 
quite different ground state structure, to different integral equations and to different 
physics. So things have to be done anew (Gohmann 1989). However, the analysis in I 
is used for orientationt. 

In section 2 we find the structure of the ground state at a given down-spin number 
M .  In section 3 integral equations are derived that determine the excess impurity 
energy in the thermodynamic limit. In section 4 the impurity magnetisation is defined, 
related to more suitable integral equations and evaluated at low applied magnetic field. 
The resulting impurity susceptibility is singular and non-perturbative. In contrast, as 
is shown in section 5, the bulk behaves rather normally. A Stoner factor is derived. It 
is, however, smaller than that resulting from perturbation expansion. 

2. The lowest energy at given M 

In order to calculate the magnetisation at a given applied field E in the thermodynamic 
limit, we need to know the lowest energy in the N,Mth sector of the Hilbert space 
as a smooth function of M .  The system minimises the expression (4), where E is this 
function. If we do so as well, the desired M , B  relation will arise. 

All the information required is contained in (6) to (8). An eigenstate of H 
corresponds to a set of q-values that solves (7) and (8). We do not know, however, 
whether each solution of (7) and (8) gives a physically admitted state or not$ The 
way out of this predicament is by reading (7) and (8) as ‘equations of motion’ to be 
supplied with initial values at ‘time’ zero: U = 0. At zero coupling the eigenstates of H 
(and of Hb) are Fock states. They certainly form a complete basis for the Hilbert space. 
The Fock state of lowest energy in sector N , M  is doubly occupied at the lowest M 
positions j n / L  0’ = 0 , l .  . .) followed by N - 2M singly occupied positions. The initial 
condition for the impurity spin is ‘up’, if B > 0 (as we shall always assume). We also 
know the M initial values of the y set. They agree with the first M k-values, since the 
only possible way for two k-values to become equal for U + 0 is to form a ‘sandwich’ 
with one y-value in between (Schulz 1985). 

With these initial values in mind, changing to the dimensionless language (5) and 
using (7) and (8) at small coupling, we obtain the asymptotically leading terms (U + 0,) 
of all momenta 

q1 = iu-’12((5 + 2w)’12 - 1 - w)l l2  

92 = U +( (5  + 2w)’/2 + 1 + w)1/2 
4 / 2 ( 2  + w)1/2 Y1 = U  

q2j = q2j-I = U-’0’ - l)n 0’ = 2, ..., M )  

t A few errors in I (in addition to those noticed in a corrigendum) might be corrected as follows: (47): the 
sum is a product; (61): take the first sum twice; (62): the fourth sign is - ; below ( 8 5 ) :  U = uta); second line 
of (88): the second sign is + ; below (95): n, m + m, i.e. a, c + m ; (103): the second kernel is K ; (117): the 
second sign is + ; (129): the first term in the numerator is E. 

$ For example, the Bethe wavefunction could vanish. This is the case for y1 = 0, which trivially solves the 
first equation (8). Furthermore, overcounting has to be avoided by suitable restrictions (see I). But, even 
apart from these examples, there could be less trivial unphysical solutions of (7) and (8). 
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(94 0' = 2M + 1, ..., N )  

y r  = u - y r  - 1)n ( t = 2 ,  ..., M). (9f) 

For the bulk case (no impurity), equations (9a)-(9c) are to be replaced by q1 = 0 
(remaining zero for all U), q2 = 2u-'I2, y1 = (~ /2 ) - ' /~ .  As (9a) shows, one electron of 
the lowest sandwich has become bound to the impurity. This bound state persists up 
to w = 2 (replace UT + 1 - w in (3) by 2 - w for parallel spins). The potential scattering 
becomes attractive below w = 1, and below w = -2 a second electron is bound to 
the impurity. We shall keep away from this value (for formal reasons) and restrict 
ourselves to the range 

which is qualitatively uniform. The singular behaviour of the impurity susceptibility 
does not depend on the presence of a bound state. It is even independent of w (see 
section 4). 

In the course of increasing 'time' U, the momenta leave their special initial values 
(9a)-(9f), but the structure of their positions in the complex plane is always maintained: 
one q purely imaginary and the others real. We state this as an assumption, which will 
be verified below. Consider, for example, (7) for j = 1 and write q1 = ip: 

From (1 1) it is obvious, that p remains real, decreases and ends up at 2-w when U + CO, 

where the difference from this value becomes exponentially small. In the remaining 
equations (7) and (8) (even after inserting q1 = ip) there are only phase factors. If 
one carefully watches the 'time' development of each phase (see I for details), taking 
logarithms is a unique procedure. The resulting equations are 

j=2 

M 

(13) 
4 .  

2-w uqj = 0' - 1)n + [U (1) - ;] - C a ( q j  + by,) 0' = 2,. . . ,N) 
b=k r=l 

with a(x)  = tan-'(x) and 

Here, p is -iql, and the prime excludes s = I. The bulk equations are obtained 
by omitting all the terms in square brackets in (12)-(14). Equations (11) to (15) 
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Figure 1. Positions of the quasi-momenta in the complex plane for infinitely strong coupling: 
full circles refer to the system with impurity and the open circles refer to the system without 
impurity. 

contain all information on the exact lowest energy for finite numbers N , M  (as long 
as 2M e N + [l]). The expressions allow for g + 0 (i.e., they are 'perturbative'). The 
reader can readily check them for N = 1,2 and they lead to the q-positions of figure 
1 in the limit of infinite coupling g 00 (L, M ,  N finite), since then all a-functions in 
(1 3) can be neglected. 

From (13) and (14) it can be shown (Gohmann 1989) that two q-values (or two 
y-values) can never become equal at a finite coupling U, and that y ,  never reaches 
zero. This justifies our initial assumption of an unchanged structure of positions (see 
figure 1) for all couplings U. 

These statements refer to that unique state in the N , M  sector that has lowest 
energy at (or near to) 'start time', U = 0. No other state in this sector may develop a 
lower energy at higher U. Arguments in support of this conjecture are given in I. 

3. The thermodynamic limit 

As is well known, the discrete equations (11) to (15) turn into tractable integral 
equations in the thermodynamic limit N ,  M ,  U + 00 at fixed g and fixed ratios 

They determine the leading, i.e. the extensive, term in the energy E.  The excess energy 
due to the impurity 

&-&Eb=-U (17) 

is, however, an intensive quantity. The subscript b refers to the bulk version of (13) 
to (15). We expect a negative excess (U positive), since additional degrees of freedom 
might allow for a lower energy in the M-N sector. The appropriate procedure for 
treating an intensive difference effect is due to Gaudin (1971): derive (still discrete) 
equations for difference momenta by subtracting the corresponding bulk equations; 
restrict yourself to the intensive terms; perform the 'partial limit' (p + 2 - w in our 
case here) for quantities saturating exponentially; consider the difference momenta to 
form a function of the ordinary momenta and relate it to their density; extend to 
negative values as an odd function for convenience. Following this recipe with the 
initial ingredients being (13) to (15), we define the bulk densities 
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as even functions of their arguments, write x(q)  to represent the function that the 
q-differences turn into (and q ( y )  for the y-differences) and introduce 

as odd functions of q or y ,  respectively. Since the procedure and notation are similar 
to those in I, we might emphasise that here the densities p, o, f and h occur with a 
different physical meaning. 

For the excess energy (17) 

d 

-d 
U = ( 2 - w ) ’ - l J  dxxf(x) 

the following integral equations arise: 

with 

2 2 - w  
= --a 71 ( T) 

+=: [ a ( e ) + a ( @ ) - 2 a ( i ) ] .  

In (21) all the terms are functions of x. The shorthand notation used for integrals 
becomes obvious from 

Clearly, (21) and (22) determine U, equation (20), if the integration limits c and d are 
known. These are to be obtained from the bulk information 

where the bulk densities derive from 

With the solution p of (25) one also obtains the bulk energy density 

If=; Eb = J;dxx’p(x) . 

The only input that activates the machinery of (20) to (25) consists of the two real 
variables m and n. The excess and bulk energies, (20) and (26), are thus functions of 
only these two: U(n,m), V(n ,m) .  
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The integral equations (25) are identical to those of Yang (1967) for the delta- 
interacting one-dimensional Fermi gas (cf also Takahashi (1970) and Schulz (1985)). 
In order to understand the effects of the impurity we need to understand some 
characteristics of the bulk. To begin, let us turn off the interaction and calculate the 
Pauli susceptibility xo. Since for g + 0 we have n,m + CO and c,d + CO, the kernels D 
in (25) act like delta-functions. The solution of (25)  is then easily obtained as 

p = (1 + 0 , 0 , ) / 2 n  o = 0, / 2 n  (27) 

with 0 a step function (equal to one inside (-c,c) or ( -d ,d)  and zero otherwise). 
Equations (16), (26), (27) and the condition c < d lead to 

V = (n3 + 3nm2)n2/12 V = nmn2/2 (dot a,) 
(28) 

( N  - 2 M ) / 2 L  z xop,OB x0 = L / n 2 N  = zr (g = 0) 

where zf is the density of states (per length 2L) of our special s-wave system. To derive 
the second line in (28) we used the general B,  M relation 

b = v ( n , m )  ( p o B / g 2  = b) (29)  

which is obtained by minimising (4), with ( 5 )  and (26) used for E .  
Next we study the large-x asymptotics of (25)  for g > 0, p N 1/271, o N m / n x 2 ,  and 

note that we are allowed to integrate the second relation (25) over all x. This leads to 

and shows that zero magnetisation m + 0 corresponds to c + CO. Remember that 
c < d holds for the non-interacting system. Thus, we observe an extremely different 
behaviour of the interacting system. The two limits g + 0 and N - 2M + 0 do not 
commute. This is intimatly related to the system's singular property to be detailed in 
the remainder. 

We turn now to considering the change of c (and of d) with increasing magnetisation 
m. By differentiating (24) with respect to m we get 

where on the right hand side of each equation in (31) a new odd function has been 
defined via 4p(x) z a.&) and 2d(x) + 46 = a,u(x), respectively. Integral equations for 
this new pair of functions are derived from (25)  

with 
2 

'pu = - -a(x)  
71 

2 
'pv = sgn(x) + -a (5) 

71 
(33) 

Note that by now all pairs of integral equations have the same form. To solve (32) for 
large c, we first rewrite them as 
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with ii = U@, and 0 = u ( l  - OC). Then we carry out a Fourier transformation and 
solve for u,u (as if ii,0 were known functions). This leads to 

The kernel R is defined by its Fourier transform l/(exp(2lk()+l), K(x) = 1/4cosh(xn/2). 
Examining (35) at large c, we use the properties 

1 
j d x K ( x )  = j d x R ( x )  = R N - 2nx2 K N exp (-nx/2) (x + CO) 

and notice that u(d) is exponentially small, while 1 < u(c) < 2. For the remaining two 
quantities in (31) we know 1/2n < p ( d )  < l /n ,  while a(c) is exponentially small. To 
see this, transform (25) into 

and use (37) again. 
To summarise: 

Turning on the magnetic field or, equivalently, increasing the bulk magnetisation m, 
leads to an unimportant change of the integration limit d.  However, c decreases rapidly. 
We have now collected the bulk information that we need in the next section to study 
the impurity effects. 

4. Impurity magnetisation 

When the impurity is introduced into the host metal, there is, on the one hand, the 
change U(n,m) of energy (see (20) to (22)), and, on the other hand, a change A of the 
integrated magnetisation: m -P m+A. The two changes become related through energy 
minimisation : 

8, [uV(n,m+A) - U(n,m+A) - b -  (m+A)ub] = 0. (40) 

The intensive quantities in (40) are V ,  U,m,b and vA. Using (29) and restricting 
ourselves to the leading (namely intensive) terms of (40), we obtain UA = U / f .  If 
the impurity magnetisation ,U is defined as the increase in up-minus-down numbers, we 
have ,U = 1 + vA and thus 
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To treat (41), the derivatives (dots) with respect to m have to be made explicit. This 
is possible in general (Gohmann 1989). Here we seek for a shorter, more transparent 
way that works in the limit of small m (i.e. small B and large c). We start by 
differentiating (26) with respect to m: 

d 

-d 
v = - -  dxxu(x) 

Equation (42) still holds true exactly and is remarkably similar to (20) for U, except for 
the additional constant in (20). This constant disappears on a further dot-differentiation 
as required by (41). At this point we exploit (39) and neglect terms O(exp(-nc/2)) 
(such as 8, but so far no powers of c ) :  

U = - -  ' S d d x x f  V = - -  " Sd dxxti . 
-d -d 

(43) 

Consider now the integral equations (21) and (32) for f and U, respectively. The 
different inhomogeneities disappear under the dot-operation, and the resulting integral 
equations for f and ir are identical (neglecting 4, except for constant prefactors in the 
(new) inhomogeneities. We conclude that 

and consequently 

p = 1 + h(c)/u(c) . (45) 

We are left with equation (21) for h (and (32) for U). It is here that the impurity details 
(22) appear. For large x (namely x of order c in magnitude) we may neglect the f-term 
in the second equation (21). It is of order exp(-nc/2) (Gohmann 1989). We may also 
use the asymptotics 4(x) 1: 4/nx of (22). It may even be replaced by the constant 4/nc. 
This rather intuitive step can be justified in detail. Hence, if we restrict ourselves to 
the leading power in c, we may write 

h(x) = - - l D , h  v(x) = 2-  S D , u  
nc c C 

and read off that h(x) = 2u(x)/nc for large x. This way we are led to 

where the 0-term is added by conjecture (based on iteration). 
Equation (47) is our main result. On turning off the magnetic field (c -+ CO) there 

remains no net magnetic moment, except for the half-spin itself (p  -+ 1). This might 
be due to point (v) of the introduction, i.e. to the one-dimensionality of the model. To 
study the slope of the p over B curve, given by (47) rather implicitly, we calculate the 
susceptibility. By analogy with (28) we define it by 
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0 

Figure 2. Range in the nm plane, over which all system-specific functions are defined. 

where so far only the definitions of m, b , p  have been used (see (16) and the text above 
(41)). For the bulk susceptibility, (29) tells us that 

and for the impurity part, (47) and (39) give 

ximp = xb),/v = exp(m/2)(2/nc2o), (50) 

For ,I see (56) and (57) below. To eliminate c in favour of m, we consider (39) as a 
differential equation and solve for c: 

,Iexp(nc/2) = 2/nm c = (2/n) ln(l/m) + O(1). (51) 

By means of (51) and (16) the impurity magnetisation is re-expressed in terms of the 
original parameters : 

Now the expected non-perturbative nature of the susceptibility is obvious. Equation 
(52) should be compared with the susceptibility of the relativistic Kondo model. For 
spin-; and high field this susceptibility agrees with (52) (Wiegmann (1981): equation 
(73); Andrei et a1 (1983): equation (4.33)). For higher spin, however, even the low-field 
susceptibility agrees with (52) (Andrei et al (1983): equation (7.3)). Remember that, 
for our model and for g > 0, there is no Kondo regime (the half spin is not screened). 

Inverse logarithms are also encountered in nearby systems. For the ferromagnetic 
spin-; Heisenberg chain at low temperature (Schlottmann 1986) a,(T<) behaves as 
(52) with T replacing N - 2M and < the correlation length. The same is true for 
aT(T2x) with x the susceptibility of a spin4 impurity ( S  > 1) imbedded in a spin-1 
Heisenberg chain (Lee and Schlottmann 1988). 

Apart from the singular initial increase of the impurity magnetisation, there is no 
further pronounced behaviour at higher fields. Most probably the impurity magnetisa- 
tion increases monotonically and reaches the maximum value at m + n, i.e. at vanishing 
down spin number, i.e. along the diagonal border line in figure 2. The value along this 
line (Gohmann 1989) is given by 

It can also be shown that p decreases when deviating from this line. 
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5. Stoner factor 

For the physical interpretation of the impurity effect in the preceding section it was 
understood that the bulk system behaves normally. In particular, the bulk susceptibility 
might have a finite value at zero field. Exchange enhancement of this value is presumed 
such that the Pauli susceptibility (28) comes out in the limit of zero coupling, and a 
Stoner factor arises to first order. This section is devoted to proving or disproving these 
conjectures. 

There are several reasons for doubting fully normal bulk behaviour. We are warned, 
for example, by the highly unusual bulk properties observed in I, i.e. in the Kondo 
case of the present model. A more direct warning is inherent in a result of Takahashi 
(1970) on the ground state energy V ,  (26). Note that the bulk is described by the 
Yang equations. According to Takahashi’s ‘conjecture l’, V is singular at the point 
g = 0 and m = 0, which is the upper left corner of the nm plane in figure 2. Certainly, 
this property (if true) is related to the non-commutativity of limits as noticed below 
(30). These two limits correspond to qualitatively quite different paths through the nm 
plane, see figure 2. The term ‘different’, of course, depends on the quantity studied. The 
zero-field susceptibility, to start with, was obtained along path 1 in section 3. Here we 
follow path 2, to see whether it also results in the Pauli susceptibility (28). 

We start with (49) and take the limit m -+ 0 first. To calculate &,0) from (43), the 
pair of integral equations for U and d has to be studied in the limit c -+ 00. By deriving 
this pair via dot-differentiation of (35), using (39), exploiting the kernel properties (37), 
introducing the function r(x) = u(x + c) and using the integral equation for r’(x), we 
obtain 

f(n, 0) = Cl(d)F (d)n/4 
00 d 

C = s, dx exp(-nx/2)r(x) F(d) = J, dx xt(x) . 
(54) 

The functions and t are defined as the solutions of 
m 

r(x) = 1 + Rr t(x) = sinh(ltx/2) + (55) 

and 

L(d) = lim r(0) exp(-ltc/2)/4a(c) (56) 
C‘CO 

is just the constant L that was introduced in (38). To evaluate it, we use (38) with (37) 
and obtain 

lim a(c) exp(c.n/2) = r(0)/41(d) = s(O)G(d)/2 G(d) = Jl dx cosh(nx/2)p(x) (57) 

where s and p are defined as the solutions of 

C” 

Equations (55 )  and (58 )  imply the identity 

s(o)r’(x) = r(O)s’(x) exp(-nx/2) . (59) 
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Combining the results (57) and (54) with (49) we obtain the exact zero-field susceptibility 
of the interacting host metal as 

It depends on the particle density n through d and (24). 
Could it happen that, as g + 0, this rather involved expression (60) turns into the 

simple Pauli susceptibility (28)? It does indeed, as we now show. g + 0 means d + CO 

and corresponds to the vertical part of path 2 in figure 2. Consider G(d) first. If we 
restrict ourselves to the leading terms (d large), we may replace 2np(d - x) by r(x) 
(compare their integral equations with each other). This leads to 

G(d) = exp(nd/2)C/2n ?(n, 0) = n2r(o) exp(-nd/2)~(d)/4~(0). (61) 

By treating F ( d )  in a similar manner (where t(x) may be replaced by s(d-x)  exp(xn/2)), 
and by using (59), we obtain 

?(n, 0) = -r(2d)dn/2 + dx r(x)n/2 = nd + O( 1) L" 
where the second equality arises from r(00) = 2, which is obvious from (55 )  and (37). 
Since, by (24), d + nn/2, we see that the Pauli susceptibility (28) results. 

At large coupling g (d small) the bulk susceptibility (60) increases as l/d2. We may 
thus state (without proof) that it is a monotonically decreasing function of n (upward 
along the vertical axis in figure 2). It is then tempting to search for a Stoner factor at 
small but non-zero coupling g (n and d large). This requires including the next order 
terms in (62). A somewhat lengthy analysis leads to 

G(d) = exp(nd/2)(C/2n)(l- 1/2nd) 

F ( d )  = exp(nd/2)(2/n)(s(O)/r(O)) (s dx r(x) - 2d - 3/n 

(63) " 
0 

to be complemented by the n-d relation 

nn = -2d + dxr(x) + O(l/d). L" 
Through (60), (63) and (64) the bulk susceptibility is obtained as 

and includes the leading correction with respect to small coupling g. Equation (65) is 
a type of Stoner factor, but not the one obtained by perturbation expansion. To see 
this we follow path 1 in figure 2 and include g-terms to first order. Doing so, we use 
the zeroth-order result (27) under the integrals in (25), and evaluate and make use of 
(26) and (24). The result is xo/(l - 4/nn2). Thus perturbation expansion is misleading. 
It overestimates the correct exchange enhancement given by (65). 

To sum up, the non-commutativity of limits still persists in the magnetic properties 
of the bulk. Fortunately, however, the leading term is insensitive to this singular 
behaviour. It remains finite and is independent of the order of limits. This is what 
we really need in order to understand the impurity result (52): the prefactor Xb is an 
unimportant constant. 



3854 F Gohmann and H Schultz 

6. Conclusion 

The excess magnetisation of a spin-; impurity placed in a paramagnetic host metal has 
been calculated. The host susceptibility is exchange enhanced itself. Thereby, the Bethe 
ansatz is shown to work well even for a local phenomenon and for a bare spectrum 
which is naturally bounded from below. 

Imagine an advanced lecture on solid state theory which, after presenting standard 
many particle mechanisms on itinerant electrons, one likes to complement by giving 
an exact model calculation. If a translational invariant model is sufficient, the one- 
dimensional Hubbard model (or its continuous version : the ID  delta-interacting Fermi 
gas) would be the appropriate (and, in essence, only) candidate. If local phenomena 
are to be included, the ‘relativistic’ Kondo model is a poor candidate, since it needs 
additional hand-waving arguments to interpret the results physically (‘cut-off after the 
solution’). The model worked through in this paper, however, is free of such artificial 
steps. The physics comes about rather straightforwardly and in accord with intuition. 

There are many more questions one would like to answer regarding the magnetic 
impurity problem and even the model at hand. For example, the details of the spatial 
distribution of the local excess magnetisation so far remain unknown. Other open 
questions concern the effect of temperature and the properties of correlation functions. 
Still, it seems likely that for our model these problems can be solved. 
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